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Abstract
Colonoscopy is the ‘‘gold’’ standard for evaluating disease activity in ulcerative colitis (UC). An important area of research

is finding a cost-efficient, non-invasive solution for estimating disease activity. We aimed to develop and validate a neural

network (NN) model that uses routinely available clinical–biological variables to predict UC activity. Standard clinical–

biological parameters and endoscopic Mayo score from 386 UC patient records were collected. A training set (n = 285), a

test set (n = 71) and a validation set (n=30) were used for constructing and validating three NN models. The first two

models predicted the active/inactive endoscopic disease status through a binary output. The third model estimated the

complete endoscopic Mayo score through a categorical output. First model (with seven categorical and 13 continuous input

variables) obtained an accuracy of 94.37% on the test set and 93.33% on the validation set. The second model (with 12

biological input parameters) achieved an accuracy of 88.73% on the test set and 83.33% on the validation set. The third

model used the same input variables as the first model obtaining an accuracy of 76.06% on the test set and 80% on the

validation set. We designed an accurate and non-invasive artificial intelligence solution to estimate disease activity, other

than colonoscopy. Our NN model achieved better results than pooled performance metrics of fecal calprotectin (the best

non-invasive marker to date) investigated in UC. Given these promising results, we envision introducing of a non-invasive

algorithm for routinely predicting disease activity shortly.
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1 Introduction

Ulcerative colitis (UC) is a type of inflammatory bowel

disease (IBD) characterized by recurrent episodes of col-

orectal inflammation resulting in clinical relapses and

remissions. Disease flares influence UC patients’ quality of

life and productivity, even in mild cases [1], whereas more

severe disease relapses can be debilitating with serious,

seldom life-threatening, complications [2]. Even patients

with sub-clinical disease activity (clinical remission with

endoscopic or histopathologic active disease) experience

extraintestinal manifestations and discomfort [1]. From the

mildest to the most severe, all disease forms have a neg-

ative socio-economic impact [3] that could be reduced by a

more rigorous disease activity monitoring to indicate early

signs of sub-clinical relapse emergence.

The ‘‘gold’’ standard for the evaluation of disease

activity in UC is colonoscopy [4]. The European guidelines

traditionally use endoscopic disease activity as a thera-

peutic target and in the process of clinical decision-making

[4–6]. However, colonoscopy has significant drawbacks

since its invasiveness yields inherent risks (perforation,

lower gastrointestinal bleeding, cardiovascular and cere-

brovascular events) [7].

Modern computational strategies in artificial intelligence

(AI)/machine learning (ML) offer reliable alternatives to

conventional diagnostic methods in the last years. To date,

several papers describing ML models have addressed

specific challenges of IBD regarding gastrointestinal image
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analysis [8, 9], phenotype prediction [10], disease course

prediction after treatment [11–13] and disease subtype

classification [14]. However, no study was designated for

the non-invasive estimation of UC endoscopic activity.

High-performance ML approaches for predicting disease

severity based on electronic health records have been

previously described for asthma [15], congestive heart

failure [16] and sepsis [17]. The first non-invasive ML

solution for predicting endoscopic disease severity in UC

based on standard clinical parameters could be outstanding.

Therefore, our goal is to develop a neural network (NN)

model to predict the disease activity in UC based on rou-

tinely available clinical variables, evaluate the model’s

predictive power and validate it on an independent patient

cohort, laying the foundations for future use in clinical

practice.

2 Materials and methods

2.1 Study design and participants

An observational retrospective single-center cohort study

was conducted on a sample of 386 UC patient records. All

patients were admitted to the Institute of Gastroenterology

and Hepatology, ‘‘Sf. Spiridon’’ Hospital Iasi–Romania,

between March 2011 and October 2019. Pre-diagnosed and

newly diagnosed confirmed UC patients who underwent a

colonoscopy for disease assessment were included. Patients

were excluded if they were in evidence with concurrent

disorders (infections, autoimmune and inflammatory con-

ditions, cirrhosis, neoplasia, hemodialysis) capable of

influencing medical parameters.

All patients provided written informed consent. The

study has full ethical approval from the Research Ethics

Commission of the ‘‘Gr. T. Popa’’ University of Medicine

and Pharmacy Iasi—Romania and ‘‘Sf. Spiridon’’ Hospital

Iasi—Romania Ethics Committee. No sex-based or racial/

ethnic-based differences were present.

2.2 Clinical protocol

Pre-diagnosed UC patients were admitted for treatment

monitoring or disease worsening. Newly UC diagnosed

cases were admitted for typical or atypical onset of

digestive symptoms, including rectal bleeding, diarrhea,

abdominal pain, urgency and incontinence. According to

the European consensus guidelines, a ‘‘gold standard’’ for

UC diagnosis is established by clinical, biological, imag-

ing, endoscopic and histopathologic findings [6]. Patients

underwent a medical history interview, physical examina-

tion, routine laboratory tests and colonoscopy with biopsy

to diagnose or assess already diagnosed UC disease.

Patients were investigated following the European standard

protocols. Only patients with a confirmed diagnosis of UC

were included.

2.3 Data collection

Documented clinical parameters were: age, gender,

smoking status, number of stools/day and presence of

diarrhea, tenesmus, lower gastrointestinal bleeding (LGB),

abdominal pain, weight loss, asthenia and pallor. Smoking

status was a categorical variable with three possible values:

0—smoker, 1—non-smoker and 2—former smoker. Sev-

eral stools/day was represented as a continuous variable.

The presence of diarrhea, tenesmus, LGB, abdominal pain,

weight loss, asthenia and pallor were represented as binary

categorical variables (1 indicating presence and 0—ab-

sence of referred symptom).

Laboratory parameters documented were: red blood

cells (RBC), white blood cells (WBC), platelets (PLT),

hemoglobin (HGB), hematocrit (HCT), plateletcrit (PCT),

platelet distribution width (PDW), mean platelet volume

(MPV), platelet large cell ratio (PLCR), neutrophils

(NEUT), lymphocytes, monocytes (MONO), C reactive

protein (CRP), erythrocyte sedimentation rate/1h (ESR),

fibrinogen, serum iron (SI), ferritin, total proteins (TP),

albumin, alpha 1 globulins (A1G), alpha 2 globulins, beta 1

globulins, beta 2 globulins, gamma globulins, glucose.

Colonoscopy was performed on the EVIS EXERA II

endoscopy system (Olympus America). The procedures

were carried out by specialist physicians from the Gas-

troenterology and Hepatology Institute, Iasi—Romania.

According to the endoscopic Mayo score, the colonoscopic

findings were represented as a categorical variable with

four possible values (from 0 to 3), as recommended by the

European consensus guidelines [4, 6]. A patient was con-

sidered to have endoscopic remission if the Mayo score

was 0 or 1. Similarly, active disease was considered for

Mayo score 2 or 3. Subsequent colonoscopic examinations

in an interval higher than one month were recorded

separately.

2.4 Management of missing values

Documented continuous variables (biological parameters

and number of stools/day) were standardized in the range

[0, 1]. Missing values were assigned using multivariate

imputation by chained equations method implemented by

the MICE package in R Studio Version 1.2.1335 �
2009–2019 RStudio, Inc. Build 1379 (f1ac3452). Missing

continuous variables were assigned by applying the

Bayesian regression built-in method, while categorical data

were imputed using the logistic regression built-in method.
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2.5 Standard statistics for feature selection

To use the ANOVA test, the fulfillment of the specific

assumptions was checked using R Studio. We verified that

the group samples were drawn from normally distributed

populations using the ggqqplot function (ggpubr package)

for the univariate analysis. The mqqnorm function

(RVAideMemoire package) was used to test multivariate

normality. The ggqqplot and mqqnorm functions were

preferred to the univariate and multivariate Shapiro–Wilk

test since the population size is greater than 50. The

homogeneity of variances was assessed using the bartle-

tt.test function considering the Mayo score as the grouping

variable. The outliers were detected with the help of the

identify_outliers function (rstatix package). The ANOVA

prerequisites were assessed with and without the outliers,

and the results were compared.

ANOVA with Holm adjustments in R Studio was used

to determine whether significant differences between the

four Mayo groups existed for each continuous parameter.

Statistical significance was considered for p B .05. Only

parameters with significant differences between at least

four pairs of groups were included in further analysis. If

any two of the selected continuous variables had high

intercorrelation with a Pearson coefficient C0.9, one of

them was removed.

Chi-square test of independence was performed to

examine whether there is a relationship between each

categorical parameter and the Mayo score. The significance

level was considered at .01. Variables for which the null

hypothesis was rejected (those proved to have an associa-

tion with Mayo score) were selected for further

investigation.

2.6 Neural network models: Construction
and evaluation

Initial data (356 patient records) were randomly divided

into a training set of 285 records (80%) and a test set of 71

records (20%) such that variables distributions in each set

were similar to those in the original dataset. Other 30

patient records from the same medical center were added

independently to be used as a validation set. Mayo cate-

gories were not equally represented in the train and test

sets, while the validation set had a balanced distribution of

Mayo classes.

Three multilayered perceptron classifiers were devel-

oped based on the training set.

Classifiers were constructed using the mlpML method

within the caret::train function in R Studio. A 10-fold

cross-validation was used to reduce the problem of over-

fitting [18]. The 10-fold cross-validation was repeated ten

times to reduce the error in the estimate of mean model

performance. Synthetic minority over-sampling technique

(SMOTE) was used with caret::train function to overcome

the issue of imbalanced data [19]. Several activation

functions were evaluated in terms of model’s performance:

Hyperbolic tangent (TanH), Softmax, Signum, Sinus,

Elliott, Threshold and Gaussian. The function contributing

to the highest performance metrics was selected as the

transfer function of the hidden and output neurons. The

caret::train function automatically tuned three hyperpa-

rameters for the mlpML method. The automatically tuned

parameters were the number of neurons in each of the three

hidden layers corresponding to the mlpML method design.

The initialization function used was randomized weights.

Standard backpropagation was employed as the learning

function with a 0.2 step width of the gradient descent.

Topological order was used as the update function. All

parameters are tuned to maximize the model’s

performance.

The first two classifiers were used to predict whether a

UC patient has endoscopic activity or remission based on

all 20 parameters chosen by the feature selection method

(first classifier) or based only on biological parameters

(second classifier). The second classifier was built as it is of

interest to construct and evaluate a model based only on

objective data. The third classifier was used for the pre-

diction of the Mayo score based on all 20 parameters. The

first two classifiers have a binary output, while the third has

a categorical output with four possible values (Mayo score

from 0 to 3).

A detailed implementation flowchart of the three pro-

posed classifiers is illustrated in Figure 1.

The developed NNs were evaluated on the test set and

validation based on accuracy (ACC) of classification.

Where applicable, area under the receiver operating char-

acteristic curve (AUC), sensitivity (SE), specificity (SP),

positive and negative predictive values (PPV and NPV)

were also determined.

To further evaluate the proposed classifiers, we also

conducted several comparisons with other algorithms

concerning the training time and classification accuracy.

Our models were compared to three methods implemented

by the caret::train function: random forest (rf), support

vector machine with linear kernel (svmLinear) and support

vector machine with radial basis function kernel

(svmRadial).
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Figure 1 Legend. Detailed

implementation flowchart of the

three multilayered perceptrons.
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3 Results

3.1 Patient characteristics

Of all 386 patient records, 257 (66%) were males and 129

(34%) females. The age range of the participants was

18-82. The distribution of the Mayo groups was imbal-

anced, with the Mayo 2 group containing three times more

records than each of the other groups: 66 records were

classified with an endoscopic Mayo score of 0, 65 with a

Mayo score of 1, 189 had a moderate endoscopic activity

(Mayo 2), and 66 had a severe disease activity (Mayo 3).

Selected clinical characteristics and laboratory findings

for all patient records, and each of the Mayo classes are

summarized in Table 1. The means for each featured

variable tend to increase or decrease with the Mayo score.

3.2 Management of missing values

A total of 367 (4,75%) missing values were imputed using

the MICE package as follows: tenesmus—3, LGB—1,

abdominal pain—2, weight loss—4, asthenia—2, palor—4,

MONO—1, ESR—55, fibrinogen—90, SI—26, TP—61,

A1G—78, CRP—33, PDW—7.

3.3 Standard statistics for feature selection

Our data met the ANOVA assumptions. Populations are

normally distributed and have common variances, provided

that the Mayo score is the grouping variable. Moreover, the

multivariate normality was confirmed by the multi-normal

Q-Q plot resulted after applying the function mqqnorm in

R. The data have a normal multivariate distribution as the

points in the multi-normal Q-Q plot tend to lie on a straight

diagonal line (Figure S1). The presence of the outliers did

not affect the results of the analysis.

Pairwise comparisons were carried out using ANOVA

with Holm adjustments to select 18 continuous variables

with significant differences between at least four of the six

Mayo groups comparisons. Significant differences between

all six Mayo classes were found for one parameter (number

of stools/day). There were significant differences between

five group comparisons concerning ten variables (WBC,

PLT, MONO, NEUT, PCT, ESR, fibrinogen, SI, TP, A1G)

and between four group comparisons concerning seven

variables (CRP, RBC, HGB, HCT, PDW, MPV, PLCR).

The results of the ANOVA pairwise comparisons are given

in Table 2.

The next step was to identify and reduce selected fea-

tures that are highly intercorrelated. Figure 2 shows the

Table 1 Clinical and biological

parameters for all patient

records and each Mayo group.

All Mayo 0 Mayo 1 Mayo 2 Mayo 3

Number of records 386 66 65 189 66

Gender (male:female) 257:129 43:23 38:27 122:67 54:12

Age (years) 44.8 ± 13.9 43.6 ± 12.8 44.6 ± 12.1 44.4 ± 14.4 122 ± 14.9

Number of stools/day 4.9 ± 3.8 1.3 ± 0.8 2.9 ± 2.27 5.6 ± 3.4 8.8 ± 4

LGB 257 (66.6%) 1 (1.5%) 24 (36.9%) 168 (88.9%) 64 (97%)

Diarrhea 265 (68.7%) 6 (9.1%) 24 (36.9%) 169 (89.4%) 64 (97%)

Tenesmus 184 (47.7%) 0 12 (18.5%) 121 (64%) 51 (77.3%)

Abdominal pain 226 (58.5%) 10 (15.2%) 23 (35.4%) 140 (74.1%) 53 (80.3%)

Weight loss 118 (38.6%) 2 (3%) 7 (10.8%) 70 (37%) 39 (59.1%)

Asthenia 210 (54.4%) 7 (10.6%) 23 (35.4%) 133 (70.4%) 47 (71.2%)

Pallor 97 (25.1) 1 (1.5%) 8 (12.3%) 59 (31.2%) 27 (40.9%)

WBC *103/lL 8.2 ± 3.2 6.6 ± 1.6 7.4 ± 2.3 8.4 ± 3.4 10.1 ± 3.8

HGB g/dL 13.3 ± 2.1 14.3 ± 1.5 13.7 ± 1.6 13.2 ± 2 12.4 ± 2.6

RBC *1003/lL 4.7 ± 0.5 4.9 ± 0.4 4.8 ± 0.4 4.7 ± 0.5 4.4 ± 0.7

PLT *103/lL 311.2 ± 111.6 252 ± 52.1 269.2±95.7 318.1±87.2 392.3±167.1

MONO *103/lL 0.68 ± 0.34 0.52 ± 0.15 0.56 ± 0.17 0.68 ± 0.32 1 ± 0.45

PDW fl 12.3 ± 2.2 13.1 ± 1.6 13.2 ±2.9 12.1 ± 2 11.7 ± 1.9

ESR mm/1h 15.83 ± 19.6 5.3 ± 5.7 9.1 ± 11.6 16.3 ± 15.4 32.9 ± 32

Fibrinogen mg/dl 388.1±83 338.1±74.2 359.5±56.3 394.7±68.7 465.1±100.2

CRP mg/dl 1.61 ± 3.4 0.3 ± 0.4 0.4 ± 0.4 1.3 ± 2.3 5.3 ± 6.1

SI lg/dl 67.3 ± 40.8 88.6 ± 34.3 82.6 ± 41 62.3 ± 40.5 41.6 ± 28.4

TP g/dl 7.4 ± 0.7 7.68 ± 0.49 7.65 ± 0.58 7.36 ± 0.67 6.89 ± 0.85

A1G % 2.8 ± 1.2 1.9 ± 0.3 2.3 ± 0.5 2.8 ± 0.9 4.2 ± 1.8

Neural Computing and Applications (2021) 33:14133–14146 14137

123



heatmap correlation matrix for all 18 numeric variables

selected by the ANOVA method. Five strong correlations

with a Pearson coefficient C of 0.9 were identified between

WBC and NEUT, PLT and PCT, HGB and HCT, PDW and

MPV, PDW and PLCR. Thus, the following five parame-

ters were removed from the analysis: NEUT, PCT, HCT,

MPV and PLCR.

Chi-square test of independence identified seven cate-

gorical variables that are associated with Mayo score (p B

0.01): LGB, diarrhea, tenesmus, abdominal pain, weight

loss, asthenia and pallor. Chi-square test results are given

in Table 3.

As a result of the feature selection stage, 13 continuous

parameters (WBC, PLT, MONO, ESR, fibrinogen, SI, TP,

A1G, HGB, RBC, PDW, CRP, number of stools/day) and

seven categorical parameters were included in further

analysis.

3.4 Neural network models: Results

The initial dataset of 356 patient records was randomly

divided into a training set (285 records) and test set (71

records) to build the classifiers. Thirty patient records were

added independently to constitute the validation set. Unlike

in the training and test sets, Mayo classes had a balanced

distribution in the validation set. Patients’ characteristics

within the training, test and validation sets are illustrated in

Table 4.

As a result of the feature selection step, three NN

models were trained using the selected parameters as

inputs. All three models were evaluated against several

activation functions in order to maximize performance.

The logistic function was selected as the transfer function

of the hidden and output units due to highest performance.

Supplementary Table 1 illustrates the best four activation

functions (Logistic, TanH, Sinus, Elliott) and the corre-

sponding accuracies obtained on each of the three classi-

fiers. Other hyperparameters (such as the learning function

and the parameters for the learning function) were selected

so as to maximize performance. Table 5 summarizes all

hyperparameters tuned for the construction of the

classifiers.

The first NN model was developed using all 20 variables

to predict whether a patient has endoscopic remission

(Mayo 0 or 1) or active endoscopic disease (Mayo 2 or 3).

The automatic tuning of the first classifier’s hyperparam-

eters resulted in one hidden layer containing one neuron.

The model’s performance metrics are shown in Table 6. On

the train set, the model had an ACC of 92.63% (95% CI,

0.89–0.95; p \ .001) with an SE of 90.22%, and SP of

93.78%, a PPV of 87.37% and NPV of 95.26% and an

AUC of 0.92. On the test set, the model achieved a good

performance with an ACC of 94.37% (95% CI,

0.862–0.9844; p\ .001), an SE of 88%, an SP of 97.83%, a

PPV of 95.65%, an NPV of 93.75% and an AUC of 0.9291.

On the validation set, model predictions were similar in

performance with ACC 93.33% (95% CI, 0.7793–0.9918;

Table 2 ANOVA pairwise

comparisons concerning

continuous parameters.

P value for Mayo classes pairwise comparison

0 vs. 1 0 vs. 2 0 vs. 3 1 vs. 2 1 vs. 3 2 vs. 3

No. of stools/day .004 \.001 \.001 \.001 \.001 \.001

WBC .16 \.001 \.001 .048 \.001 \.001

HGB .11 \.001 \.001 .11 .001 .02

RBC .3 .01 \.001 .24 \.001 .004

HCT 0.23 .002 \.001 .23 .001 .009

PLT .34 \.001 \.001 .002 \.001 \.001

MONO .45 \.001 \.001 .01 \.001 \.001

NEUT .14 \.001 \.001 .047 \.001 .005

PCT .35 \.001 \.001 .02 \.001 \.001

PDW .7 .003 \.001 \.001 \.001 .45

PLCR .33 \.001 \.001 .005 \.001 .33

MPV .36 \.001 \.001 .003 \.001 .22

ESR .25 \.001 \.001 .02 \.001 \.001

Fibrinogen mg/dl .13 \.001 \.001 .006 \.001 \.001

CRP .9 .047 \.001 .06 \.001 \.001

SI .38 \.001 \.001 \.001 \.001 \.001

TP .8 .005 \.001 .01 \.001 \.001

A1G .1 \.001 \.001 .004 \.001 \.001
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p \ .001), SE 92.86%, SP 93.75%, PPV 92.86%, NPV

93.75% and AUC 0.933. ROC curves proving model per-

formance on the train, test and validation sets are shown in

Figure 3.

The second NN model was built to predict the same

binary outcome (endoscopic remission or activity) as the

first classifier using only the 12 biological input parameters

in order to investigate a model that uses only objective

data. The hyperparameters of the second classifier were

tuned automatically resulting in one hidden layer with three

neurons. The second model’s performance metrics are

indicated in Table 7. On the train and test set, the model

achieved a good performance: ACC 87% (95% CI,

0.8255–0.9069; p\ .001), SE 89.13%, SP 86.01%, PPV

75.23%, NPV 94.32%, AUC 0.9084 on the train set and

Figure 2 Legend: correlation heatmap showing the Pearson coefficients between all continuous parameters nominated by the feature selection

method.

Table 3 Chi-square test for determining the association between

categorical parameters and Mayo subscore (significance level: .01).

Result P value

Diarrhea X2 (3, N = 386) = 207.21 \ .001

Tenesmus X2 (3, N = 383) = 127.97 \ .001

LGB X2 (3, N = 385) = 223.08 \ .001

Abdominal pain X2 (3, N = 384) = 99.578 \ .001

Weight loss X2 (3, N = 382) = 64.43 \ .001

Asthenia X2 (3, N = 384) = 89.186 \ .001

Pallor X2 (3, N = 382) = 33.528 \ .001

Smoking status X2 (6, N = 335) = 14.622 .02
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ACC 88.73% (95% CI, 0.79–0.9501; p\ .001), SE 88%,

SP 89.13%, PPV 81.48%, NPV 93.18%, AUC 0.9191 on

the test set. Performance on validation set was rather

moderate: ACC 83.33% (95% CI, 0.6528–0.9436; p \
.001), SE 78.57%, SP 87.5%, PPV 84.62%, NPV 82.35%,

AUC 0.8482. Performance of the second classifier on the

train, test and validation sets is shown in Figure 4.

The multiclass predictor (third NN model) was devel-

oped using all 20 variables to predict the endoscopic Mayo

score. The model’s output is a categorical variable with

four possible values ranging from 0 to 3. The tuning of the

third classifier’s hyperparameters resulted in one hidden

layer with five neurons. Model’s renderings on each of the

three datasets are shown in Table 8. The model had a good

performance on the train set with an ACC of 89.44% 8304

(95% CI, 0.8526–0.9276; p \ .001). and a multivariate

predictor AUC of 0.9541. Model performance was mod-

erate on the test set (ACC 76.06%, CI = 0.6446–0.8539;

multivariate AUC 0.8726) and on the validation set (ACC

80%, CI = 0.6143–0.9229; multivariate AUC 0.9175). As

defined by Hand and Till [20] as a mean of several AUC

from pairwise comparison of classes, multiclass AUC was

computed using the function multiclass.roc (pROC

Table 4 Clinical and biological

parameters for train set, test set

and validation set.

Train set Test set Validation set

Number of patients 285 71 30

Gender (male:female) 195:90 46:25 16:14

Age (years) 45.7 ± 14 42.5 ± 13.5 41.1 ± 12.4

Number of stools/day 4.9 ± 3.7 5.4 ± 4.3 4.7 ± 4.5

LGB 194 (55%) 47 (66%) 16 (53%)

Diarrhea 197 (69.1%) 48 (67.6%) 20 (66.7%)

Tenesmus 137 (48.1%) 36 (50.7%) 11 (36.7%)

Abdominal pain 169 (59.3%) 45 (63.4%) 12 (40%)

Weight loss 90 (31.6%) 24 (33.8%) 4 (13.3%)

Asthenia 164 (57.5%) 40 (56.3%) 6 (20%)

Pallor 74 (26%) 19 (26.8%) 4 (13.3%)

WBC *103/lL 8.1 ± 2.8 8.5 ± 4.5 8.7 ± 3.6

HGB g/dL 13.3 ± 2.1 13.3 ± 1.9 13.6 ± 2

RBC *1003/lL 4.7 ± 0.5 4.7 ± 0.5 4.8 ± 0.5

PLT *103/lL 308 ± 101.1 321.4 ± 132.5 308 ± 101.7

MONO *103/lL 0.67 ± 0.3 0.73 ± 0.4 0.7 ± 0.3

PDW fl 12.4 ± 2.2 12.3 ± 2.1 12.2 ± 2

ESR mm/1h 16.2 ± 19.7 17.4 ± 20.9 5.8 ± 4.2

Fibrinogen mg/dl 391.7 ± 78.3 395.2 ± 87.9 343.3 ± 98.9

CRP mg/dl 1.6 ± 3.2 2.1 ± 4.3 1 ± 1.7

SI lg/dl 67 ± 42.5 66 ± 34.7 73.4 ± 37.7

TP g/dl 7.4 ± 0.7 7.4 ± 0.7 7.4 ± 2.7

A1G % 2.7 ±1.1 2.9 ± 1.5 2.8 ± 1.3

Table 5 Tuning of the

hyperparameters used for the

construction of the neural

network classifiers.

Parameters st classifier 2nd classifier 3rd classifier

Number of input layer units 20 12 20

Number of hidden layers 1 1 1

Number of hidden layer units 1 3 5

Initialization function Randomize weights

Learning function Standard Backpropagation

Parameters for the learning function g = 0.2 dmax = 0

Update function Topological Order

Activation function for hidden and output units Logistic

g—the step width of the gradient descent; dmax—the maximum difference dj = tj-oj between a teaching

value tj and an output oj of an output unit which is tolerated.

14140 Neural Computing and Applications (2021) 33:14133–14146

123



package in R). Multiclass AUC was calculated using a

multivariate predictor with class probabilities.

The comparisons between the mlpML method and the

rf, svmLinear and svmRadial are shown in Table 9. The rf,

svmLinear and svmRadial methods were compared with

each of the three proposed mlpML classifiers on the train,

test and validation sets. Each algorithm is assessed based

on the training time and accuracy of classification.

Table 6 First classifier

performance metrics.
Actual Train set Test set Validation set

Predictions Predictions Predictions

Remission Activity Remission Activity Remission Activity

Remission 83 12 22 1 13 1

Activity 9 181 3 45 1 15

ACC 92.63% 94.37% 93.33%

95% CI (0.8896, 0.9538) (0.862, 0.9844) (0.7793, 0.9918)

P value \ .001 \ .001 \ .001

SE 90.22% 88% 92.86%

SP 93.78% 97.83% 93.75%

PPV 87.37% 95.65% 92.86%

NPV 95.26% 93.75% 93.75%

AUC 0.92 0.9291 0.933

Figure 3 Legend: performance of the first classifier to predict endoscopic remission vs. relapse.
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4 Discussions

Our study is the first neural network developed for pre-

dicting endoscopic disease activity in UC based on rou-

tinely available clinical parameters. We demonstrated that

using only standard, non-costly, non-invasive clinical and

biological data can differentiate active UC from inactive

UC.

To date, numerous studies have been conducted in order

to establish non-invasive biomarkers capable of estimating

endoscopic activity in UC, avoiding invasive diagnostic

tests [21]. Of all, fecal markers (especially calprotectin)

were noted to yield the best performance so far, with high

accuracy and sensitivity [22]. Thereby, fecal calprotectin

(FC) is now used in UC patients’ clinical management

according to several consensus guidelines [5, 23]. How-

ever, FC has not been validated for biomarker-based

decision making due to low reliability: significant vari-

ability across platforms (which makes it difficult to estab-

lish a cutoff value), intra-individual day-to-day variation

FC concentrations, degradation of FC levels at room

Table 7 Second classifier

performance metrics.
Actual Train set Test set Validation set

Predictions Predictions Predictions

Remission Activity Remission Activity Remission Activity

Remission 82 27 22 5 11 2

Activity 10 166 3 41 3 14

ACC 87% 88.73% 83.33%

95% CI (0.8255, 0.9069) (0.79, 0.9501) (0.6528, 0.9436)

P value \ .001 \ .001 \ .001

SE 89.13% 88% 78.57%

SP 86.01% 89.13% 87.5%

PPV 75.23% 81.48% 84.62%

NPV 94.32% 93.18% 82.35%

AUC 0.9084 0.9191 0.8482

Figure 4 Legend: performance of the second classifier to predict

endoscopic remission vs. relapse.

Table 8 Multiclass predictor

performance (third classifier).
Train set Test set Validation set

Mayo predictions Mayo predictions Mayo predictions

Actual Mayo 0 1 2 3 0 1 2 3 0 1 2 3

0 69 2 1 0 12 1 0 0 8 1 1 0

1 2 65 8 0 3 7 2 1 0 5 1 0

2 0 3 58 9 0 1 23 2 0 0 5 1

3 0 1 4 62 0 1 6 12 0 0 2 6

ACC 89.44% 76.06% 80%

95% CI (0.8526, 0.9276) (0.6446, 0.8539) (0.6143, 0.9229)

P value \ .001 \ .001 \ .001

Multivariate predictor AUC 0.9541 0.8726 0.9175
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temperature after stool collection [22]. Additionally, FC is

not allowed in Asian and some Western countries [24] and

is more expensive than routine laboratory investigations.

On the contrary, classical and emerging serum biomarkers,

although more stable and with less intra- and inter-vari-

ability than fecal markers, proved lower accuracy when

examined separately [25].

Individual predictive powers of classical markers,

although small, were considered together in a composite

approach through our ML solution, yielding significantly

better results. Thus, the feature selection step consisting of

ANOVA pairwise comparisons resulted in 13 continuous

parameters (WBC, PLT, MONO, ESR, fibrinogen, SI, TP,

A1G, HGB, RBC, PDW, CRP, number of stools/day) and

seven categorical parameters to be used as inputs for our

ML solution. Our selected biological parameters’ clinical

relevance is confirmed by numerous studies in which

standard inflammatory biomarkers such as WBC, CRP,

ESR, fibrinogen, PLT and A1G have already been studied

as markers for disease activity in UC [26]. Moreover,

abnormal values of HGB, RBC, SI are a consequence of

gastrointestinal bleeding that is one of the main symptoms

of active UC. HGB has also been found to correlate with

endoscopic activity [27]. The clinical parameters, such as

the number of stools/day and all categorical parameters

selected as inputs for the NN algorithm, reflect various

manifestations of active UC. The rationale for including

clinical data in our model is that several studies assessing

composite markers consisting of clinical and biological

data have shown superiority over biological data alone in

discriminating active and inactive IBD [28].

The first classifier proposed in our study used eight

clinical parameters and 12 routine biological tests to dif-

ferentiate endoscopic active UC from inactive UC with a

high ACC of 94.37%, and SE of 88%, an SP of 97.83% and

an AUC of 0.9291 on the test set and ACC 93.33%, SE

92.86%, SP 93.75% and AUC 0.933 on the validation set.

A recent meta-analysis that evaluated FC in assessing

IBD endoscopic activity reported a pooled sensitivity of

87.3% (85.4–89.1), specificity of 77.1% (73.7–80.3) and

AUC of 0.91 in UC [29]. Our study’s ML approach

achieved higher performance than all indicators reported in

the meta-analysis.

It is essential to notice that studies evaluating non-in-

vasive methods to assess UC endoscopic activity repeat-

edly use the binary classification (Mayo 0 and 1 for

inactive/Mayo 2 and 3 for active disease) rather than the

complete endoscopic Mayo score. This approach is justi-

fied since a favorable prognosis was documented for

patients with a Mayo score of 0 and 1 (more prolonged

clinical remissions and lower rates of colectomy) than the

patients with a Mayo score of 2 and 3 [30]. This enhances

the idea that an ML model like the one advanced in our

study, with an excellent performance on the test and vali-

dation sets, will prove to be a useful tool for disease

monitoring in clinical practice after rigorous validations on

external patient datasets.

The second classifier presented in our paper used only

the 12 routine biological tests to predict the same binary

Table 9 Comparisons between the mlpML (multilayered perceptron)

and other methods of the caret::train function: rf (random forest),

svmLinear (support vector machine with linear kernel), svmRadial

(support vector machine with radial basis function kernel) concerning

the training time, hyperparameters and accuracy

Method mlpML rf svmLinear svmRadial

1st classifier Training time (sec) 62.49 134.06 7.89 24.83

Tuned hyperparameters 1 hidden unit (1 layer) mtry = 2 C = 1 sigma = 0.0433973 C = 0.25

ACC Train set 92.63% 99% 88.4% 90%

Test set 94.37% 94% 86% 92.9%

Validation set 93.33% 90% 83% 90%

2nd classifier Training time (sec) 54.1 120.58 6.25 24.5

Tuned hyperparameters 3 hidden units (1 layer) mtry = 2 C = 1 sigma = 0.1190891 C = 0.5

ACC Train set 87% 99% 80% 82%

Test set 88.73% 76% 80% 70.4%

Validation set 83.33% 83% 73% 76.7%

3rd classifier Training time (sec) 32.19 73.3 3.23 11.95

Tuned hyperparameters 5 hidden units (1 layer) mtry = 2 C = 1 sigma = 0.04594297 C = 1

ACC Train set 89.44% 100% 80% 84.5%

Test set 76.06% 69% 69% 64%

Validation set 80% 73% 63% 70%
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output that differentiates inactive from active disease with

an ACC 88.73%, SE 88%, SP 89.13%, AUC 0.8857 on the

test set, and ACC 83.33%, SE 78.57%, SP 87.5%, AUC

0.8304 on the validation set. The results obtained on the

test set are similar to the results of the meta-analysis

mentioned above (a SE of 88% in our study vs. a pooled SE

of 87.3% for FC in the meta-analysis). However, our

classifier obtained higher values for SP (89.13% in our

study vs. 77.1% for FC in the meta-analysis). Additionally,

a high NPV of 93.18% obtained by the second NN model

on the test set could reliably rule out active UC. The per-

formance metrics obtained on the validation set were

slightly lower, except for SP, which was higher than the

pooled results of FC reported in the meta-analysis.

Thereby, the second model could successfully be used in

clinical practice, considering that the results of the second

classifier (ACC 88.73% on the test set) are roughly similar

to the FC performance in detecting active disease along

with the fact that the use of FC is now recommended in the

management of UC patients in several consensus guideli-

nes: ‘‘FC levels correlate with degrees of endoscopic and

histologic inflammation in UC and therefore have been

proposed as a marker of disease activity to guide treatment.

FC levels are more sensitive and specific than serum

inflammatory markers and also less invasive than endo-

scopy or mucosal biopsies, so this assessment has become

routine for many clinicians who are managing patients with

UC’’ [5, 23]. Moreover, considering that our model uses

only cheap, more stable, immediately available laboratory

tests than FC, future research on larger datasets remains of

interest for further validation of the proposed classifier.

Third classifier used all 20 parameters to predict the

endoscopic Mayo score with an ACC of 76.06% (95% CI,

0.6446–0.8539; p \ .001) and a multivariate AUC of

0.8726 on the test set and an ACC of 80% (95% CI,

0.6143–0.9229; p\ .001) and multivariate AUC of 0.9175.

To date, there are no studies that aimed to predict the

endoscopic Mayo score using only non-invasive biomark-

ers. Although binary classification into active/inactive

disease is of compelling importance, there are studies to

suggest that differentiating between endoscopic Mayo 0

and 1 may have a better impact on predicting future out-

comes. In a study, the risk of relapse for UC patients was

higher for a Mayo score of 1 than Mayo 0 [31]. For this

reason, results obtained by the multiclass predictor in our

study could open the path for further research in estimating

complete endoscopic Mayo subscore by non-invasive ML

methods, taking into account that although ACCs obtained

were moderate (but not small), the higher multiclass AUCs

keep the hopes high.

Three of the most common algorithms used in health-

care applications are the neural networks, support vector

machines and random forests [32]. In terms of comparisons

between the different algorithms, the results illustrated in

Table 9 justify our choice for the multilayered perceptron

method. The random forest approach was both slower and

less accurate, with a tendency to overfit. The support vector

machine methods were undoubtedly faster at the cost of

significantly lower accuracies.

4.1 Limitations and future perspectives

Firstly, our dataset’s small size and the fact that the inde-

pendent validation set is from a single center entail rigor-

ous external validation with data from other centers.

Secondly, the imbalanced distribution of Mayo classes in

the initial dataset of 356 records (with Mayo 2 class con-

taining three times more records than each of the other

groups) predisposes to calculation biases. However, the

SMOTE function in R was used to reduce these biases

significantly. Thirdly, FC was not documented for a direct

real-time comparison with the proposed NN classifiers’

performance.

In the future, these drawbacks could be overcome by

employing studies on a larger number of patients in a

center with greater accessibility that would permit orga-

nizing a cohort with a balanced distribution of Mayo

classes. Next trials would improve models’ performance by

incorporating more ML algorithms and real-time compar-

isons with the documented FC levels.

Further improving and validating automatic learning

methods in this area may lead to more frequent monitoring

of UC patients, significantly fewer invasive procedures,

less exposure to inherent risks and more comfort for the

patients. Intensified UC monitoring may lead to the early

tracing of subclinical inflammation. Early detection of

inflammatory relapses is of great importance since long-

lasting subclinical disease activity increases the risk of

colonic neoplasia and decreases patients’ quality of life and

productivity [1, 33].

For our method to make its way into clinical practice

and follow the path of other AI solutions approved by the

Food and Drug Administration (Guardian Connect System

[34], WAVE Clinical Platform [35]), future head to head

prospective trials to compare the performance of AI models

and fecal calprotectin, randomized trials between the two

techniques and the approval of a national or international

regulatory body will be statutory.

5 Conclusions

In the context of a difficult to manage disorder with

unknown etiology and pathogenesis [36], unpre-

dictable disease course and current invasive diagnostic

methods, our study proposes a cost-efficient, non-invasive

14144 Neural Computing and Applications (2021) 33:14133–14146

123



technique to predict UC activity accurately using modern

computational solutions in the area of AI/ML. Our neural

network model represents a significant advance in the non-

invasive assessment of inflammation in UC, leading to

further research and possible future use in clinical practice.

At a time when neural network algorithms are becoming

increasingly sophisticated, less complex neural networks,

such as the multilayered perceptron, are able to solve real-

world medical problems in a time-efficient manner and

based on reduced amounts of data.
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